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Abstract—Schur’s lemma is applied to linear constitutive equations of elastic dielectrics which remain
invariant under a group of symmetry transformations. The method of group representation theory is
discussed in detail to generate constitutive equations for alpha-quartz which belongs to the D;(32)
symmetry group. The constitutive equations thus constructed agree with those obtained by Mindlin and
Toupin{1]).

1. INTRODUCTION

The problem of constructing explicit constitutive equations which remain invariant under a
group of symmetry transformations has been the subject of many investigations in recent years.
To incorporate symmetry restrictions in non-linear constitutive equations, it was customary to
follow the method of Voigt[2] where one starts with polynomial expansions and then in-
vestigates the restrictions which the material symmetry imposes on the constant coefficients in
such expansions. This method is cumbersome and increases in complexity with the increase in
degree of the terms. More sophisticated procedures have been developed by Fieschi[3],
Fumi[4], Callen[5] and Nye[6] which determine the exact number of non-zero independent and
dependent coefficients in the constitutive equations, as restricted by symmetry. Recently, a
systematic and direct method of group representation theory has been developed by Smith and
Kiral[7, 8] to incorporate symmetry restrictions in constitutive theory. Applications of methods
of finite groups and symmetry to problems of mechanics and constitutive theory are discussed
in [9, 10].

In this paper, the method of group representation theory and Schur’s lemma are employed[7]
to construct constitutive equations for a-quartz, which belongs to the crystallographic point
group D;(32). The linear constitutive equations for the elastic dielectric with arbitrary sym-
metry are written in matrix form containing six components of each of the symmetric stress and
strain tensors (4, S), three components of each of the electric and polarization vectors (LE, P),
and nine components of each of the electric and polarization gradient tensors (& IT), involving
171 independent constants. The symmetry group for a-quartz consists of six elements which
are 3 x 3 matrices. Carrier spaces associated with the irreducible representations of the group
are constructed and the number of independent constants reduced to 34.

The set of constitutive equations thus obtained, agree with those derived by Mindlin and
Toupin[1].

2. LINEAR CONSTITUTIVE EQUATIONS OF ELASTIC
DIELECTRICS

Let a homogeneous linear elastic dielectric continuum with the contribution of polarization
gradient taken into account and bounded by a surface S, occupy a region V in a rectangular
Cartesian coordinate system.

The general quadratic expression for the strain energy density of deformation and polariza-
tion is given by

1 1
WE =3 cuiSiSu + 3 aiPiP; +% by T1; 11y
+ fiSicP; + jiuPilly + dija 1Sy Q.0
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where S; are the components of the symmetric strain tensor, P; are components of the
polarization vector and II; = P;;, are the components of the polarization gradient tensor.
Surface energy effects are assumed to be negligible.

The constitutive equations for the components of stress tensor o;, the local electric vector,
1E;, and the electric tensor, €; are given by [1]

awrt
0 =g = CiSia + fuaiPrc + il (2.2)
ij
Wt .
= 1Ei =5~ = fuSu + auPi + jullu (2.3)
Iwt .
ARNFT| P iktSkt + JeigPic + it iy, 24
L]

Next, introduce the following abbreviated matrix notation,

=T _ 5T _

g = [0'11, O, 033, O3, 031, 012, LE" =[E\, E;, E4]
ST _ 5T _

S* =[S, Sn, 833, S»3, S31, Si2l,  P" =[Py, Py, P3]
=T _

€ =[en, €n, €13, €0, €3, €3y, €13, €12, €21]

07 = 1}y, M2, I3, I3, Ty, I3y, I3, T, Ty (2.5)

where the superscript T denotes the transpose of the column vector. The scheme in which a
pair of indices, ij, or kl, is replaced by a single index is indicated in Tables 1-3.
The system of constitutive equations, can now be written in the matrix form as

g = &§ + f.P 4.0 26
6x1) 6x6)(6x1) 6XHBXD T 6X)OX 1)’ (2.6)
_E= f§ + a-p i @

(Bx1) @Bx6)6x1 (3xH(3X 1)+(3x9)(9>< 1y

Table 1. Indexing scheme for ciui, gmij

(i), (kb 11 22 33 2332 3,13 12,21

1 2 3 4 5 6

, m=1-3

Table 2. Indexing scheme for by, jmur

(i), (kb) 11 2 33 23 32 31 13 12 2t

1 2 3 4 5 6 7 8 9

kh 1 2 33 23 32 k) 13 12 21
6

(i) 11 22 3 2332 3,13 12,21

1 2 3 4 5 6
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¢ = 4§ | [P + b0 28
Ox1) Ox6)(6%x1) Ox3)HBx1D) OxNOx1)’ '

where the numbers in parentheses below the matrix indicate the order of the matrix. For an

elastic dielectric with arbitrary symmetry, the total number of independent material constants is

171. A group of symmetry transformations under which the constitutive equations remain
invariant leave some constants mutually dependent and make others vanish.

3. ALPHA-QUARTZ—THE SYMMETRY GROUP Dy(32)

Of all the elastic dielectrics, a-quartz is an optically active and birefringent material. It
belongs to the D;(32) crystallographic group. The matrices comprising the symmetry group, I', of
this crystal class are given by

1 1o
2 2
3 1
A> 1 Ao -\/T -3
1 1
[0 S V£
2 2 1
As [ -4 As |, -1
1 -1
13 (1 V3
2 2 2
V3 o1 V31
-1 B -1

where . denotes a zero component.
There are three inequivalent irreducible representations[8] Di(A.), D:(A,) and Dy(A,),
= 1-6 associated with the group I' = {A, 4, /fp Aq, As, Ag} which are of degree one and two
and are listed in Table 4.
The determination of the form of the constltutlve equatlons (2.2)-(2.4), which are invariant

under the group I', becomes apparent when S P and I are decomposed into sets which form
the carrier spaces of irreducible representation of T, D,(A,); i=1,2,3and a =1,...,6.

The six independent components (S, Sz, S, Sz, S31, S12) of the symmetric tensor S,,, the
three independent components (P;, P,, P;) of the vector P, and the nine components (IT;;, IT»,
I3, Iy, I3, sy, DLy, IDjp, IIy) of the arbitrary tensor Il can be split into the sets[7]

(1) S, (Su+ S»)®, Y, (I, +Mxn)Y;

(2) P®, (- T)®;

Table 4. Irreducible representations of Ds(32)
A A, A A As As

Di(Aq) 1 1 1 1 1 1
Dy(A,) 1 1 1 -1 -1 -1

A} DSV
wo 9 (43 [ 5]
2 2
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(3) {SB, S23}(3), {2S12, Sll - SZZ}(S)’ {P2’ - PI}(3)9
{I13, 53}, {Tyy, M35}, {11 + Iy, 1T — 1} (3.3)

the transformation properties of which are defined by Dy, D, Ds. The new sets of quantities,
S*, P* and IT* (which are the carrier spaces of the irreducible representations) are related to
the original sets by the following transformations

S*= O(S)' S, pP*= Q=(P) <P, fi* = Qu, 1l (3.2)
where
S* =89, (S1+ S, {S13, S5}, {2812, (S11 — S, (3.3a)
P¥ =[P, {P,, - P}, (3.30)
% = [N, (L, + M), (T — )@, {115, 53},
X {Tyy, M5}®, {(TMhn + Tyy), (T — M)}, (3.3¢)

and where the matrices for (3(5), 6(1)), (3(“, as well as for their inverses are given in Appendix A.

4. REDUCTION BY SCHUR’S LEMMA

Multiplying the constitutive equations (2.6)(2.8) by O( s O(p) and Qu, respectively, one can
rewrite the system in the following form

FF =8 Sx 4 fr . Pr oy ge i+ @.1
~ BX=f*. §%4 g% Px+j*. IT* (4.2)
e¥=gd* - §*+j¥ . Pryp*. i 4.3)
where
o* = Q=(S) -6, E*= Q=(P) ‘P, &= Q=(n) -, 4.4)

S*, P* I1* are defined by (3.2), and the coefficient matrices are given by

g f ‘z*r 6(5) . ¢ 1 ‘zt éfs') .
f: é* j_* = . Q) - f= l_j j Q(A) -
a* j* b* : . Qm d ' b Qun

Making use of the matrices (A1)-(A4) and Schur’s Lemma[7], the coefficient matrices
assume the forms shown in Appendix B. The following observations can be made from the
matrices listed in Appendix B.

(i) The matrices 4, b and & are symmetric.

(i) In all starred (*) coefficient matrices \' represents a constant times ((1) (l)) and is

associated with the elements of the corresponding column matrix (in the constitutive equations)
which form the carrier space of the irreducible representation Ds.

(iii) In the matrix &*, the elements c¥, ¢%, c¥ and c% are associated with the elements S52,
(Si1+ S»)" of the column vector $* which form the carrier space of the irreducible represen-
tation D,.

(iv) In the matrix d*, the element af; is associated with the element Py of the column
vector P* which fornsl the carrier space of the irreducible representation D;.

(v) In the matrix j*, the element j¥ is associated with the element 1% — 1% of the column
vector IT* and j3; is associated with the element P;® of P* which are both carrier spaces of
irreducible representation D,.

(vi) In the matrix d*, d¥,, d,, d},, d>, are associated with the elements I1$Y, (I1,, + I1,,)" of the
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column vector IT* or the elements S, (Si; + Sx)® of the column vector $* which are both the
carrier space of the irreducible representation D,.

(vii) In the matrix b*, the elements b}, b¥, b¥, b% are associated with the elements IT$),
(IT); + IM5,)™" of the column vector IT1* which are the carrier space of irreducible representation
Dy; b3 is associated with the elements (I1;, — I1,;)® which is the carrier space of irreducible
representation D;.

A comparison of corresponding elements leads to a system of algebraic equations listed in
Appendix C, the solution of which results in the following restrictions on the elastic and
dielectric constants.

(a) For matrix ¢

Csj = Cjs = C¢; = Cj =0 (i=123,4)

Cu= C34=0,

while ¢y, €12, €13, Cras €33, Cas are distinct non-zero constants, and ¢y, €23, C24, Css, Csg, Ces aT€
dependent non-zero constants, given by

C»n =Ci, Cn = (3, €24~ — Cras

Css=Cay, C6=Cuy  Ces={(Cr11—Cr2).
Thus the number of independent constants in ¢ is 6.
(b) For matrix f
fi=fi=0  (=123,4)

fii=hi=0  (j=5,6)

while f;; and f,4 are non-zero distinct constants, and fi», fis, f2 are dependent non-zero
constants given as

fu=-fu, fis=—fs fu=-fun.
Thus the number of independent constants in the matrix [ is 2.

(c) For matrix d
a; = ayy(81i6y; + 8205) + a336130;3

where §; is the Kronecker delta. The number of independent constants in the matrix 4 is 2.
(d) For matrix j

ju=0 (k=6-9), ju3=jx=j7=0

ju =ju=0 (k=1-5)

where ji1, jis, Jis, j3s are distinct non-zero constants and ji,, ju, ja7, jas, j29. j3e are dependent
non-zero constants given by

f|2=_f||, f26=—f|5, j27=‘j|4, f28=—j||,
J=—jn, Jao=— .

Thus the number of independent constants in the matrix ]: is 4.
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(¢) For matrix d
dis=de=0 (k=1-5)
dee =dn=dy=du=0 (k=1-4)
dy=dp=dyu=0

while dyy, dy2, di3, du, d31, ds3, day, dug, dsy, dss are distinct non-zero constants and dy;, da, dy,
da, dsz, di, dsy, des, des, dys, dag, dss, dgs, dos and dos are dependent non-zero constants defined
as

dy=dn, dn=dy, dpn=ds dy=-dy
dun=dy, dp=-dy, do=-ds, ds=dsu, de=ds

1
dis=dy, du=dn, dys=du, dx= E(d“ —dyp)

dos = dya, d96=';‘(du-d12)-
Thus the number of independent constants in matrix d is 10.
(f) For matrix b (symmetric)
by=0 (i=1-5,j=6-9) and (i=6-9,j=1-5)
b3y = bss = bgz = bs; =0

while byy, b, b3, bs, bis, bas, bus, bss, bes, by are distinct independent non-zero constants and

by, by, by, bas, bay, bsy, bes, ber, bes, b, brr, bas, bg, bos are dependent non-zero constants
given by

by = by, by = by, b= —bis, bas=—bis

bo=-bu, ba=-bs, be=bss, bsy=bs,  beg=bs,
bes = bsy

bis=bs, brn=bu, bp=by, bp=by

bss=bis, byy=b, be=bis, by=by,  by=bs.

Thus the number of independent constants in matrix b is 10.

The 171 (214 18+6+27+54+45) independent constants of an elastic dielectric with
arbitrary symmetry are thus reduced to 34(6 +2+2+4+ 10+ 10) for an alpha quartz belonging
to the D3(32) symmetry group.

The system of constitutive equations (2.6)-(2.8) for the a-quartz assumes the form

S Sun Sn Sn Sy Sa P, P, Py My My My My My My My Mp [k

on Cut Cr2 [4H) i . . fn . . dy dp  dy dy dy

on Cn Cn €3 —Cu . . fu . . diz dy dy -dy ~ds

oy Cn cn [41) . dyy dy  dy . .

[2%) € —Cu . Cu . . fia . du  —du . du  dy . . . .
oy . . . . Cu Cu . -fu . . dse du dy di
-4} . . . . Cu Ces . ~-fu . . . . . . dn dy dye dy
~.Ey fu - . fu . . ay . . Jn = jn . Ju I . . . .
~.E . . . . ~fu  —fun . ap . . . =jis  ~ju  —in i
~ By . . . . . . . an . . . . . . . Jw s
€@ dy dp dn de . . Jn . . by by by bu by

& dp 4y dy -du . . t TR . b by by -bu —by

€3 dn dg; dss . . . B . . bu b.) bg] . .

L7 da  —dy . du - . . Ju . . by =bu b by

€ dyy  —dy . dse . . ts . . by -bys ! bs bss . . . .
€ . dyy  dy . ~is . . . - . . by bas bis bis
€3 . . . . du  dy . ) . . . . . bs  bu b bu
€ . . . . dy dye . =in Jre . . . . . bis b bas bgy

€ . . . . dy dys . -ju —is . . . . . bys b by by
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where
1
Ce6 = C11— €,y bgs + bgg = by — by, dss=§(du-dlz)

and which, with minor changes in notation, agree with those given by Mindlin and Toupin[1].
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APPENDIX A
The matrices Qs), Qip) and Qqy which appear in eqn (3.4), are given as

[ I T . 1
Q=1 - ; 1 Qp = 1
. .2
1 -1 (AD)
— 1 .
1 1 .
. 1 -1
. . L 1
Q(n)= . . . 1 . (Az)
. . N . 1
1 .
. 1t
L1 -1 g
The inverse of these matrices Q.(s,, Q-(p) and é(n) can be easily evaluated and are given by
12 12
ga- i 112 -12 . .o -1
= -1
S P Rl | ")
1 -
12
1R 117]
. 1R -1/2
| BN .
. .- . . 1 . .
Qah=|. . | (A®)
. . . . 1
. 1 .
.o 112 . 12
Ls . '”2 1/2 -
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&= Q0 =

;" = é|s»a'éfu‘x=

dss

dy +dy

ds
2dy,

E,, ~dy
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APPENDIX B
The matrices &*, f*, 4%, §*, d*' and b* listed in eqn (4.5) are evaluated using (A.1)-(A.4) and are given by

ctep 1 3= Cn

(53} “_2"‘ Cs3 Ca3 5663 “‘_2“"

Cutcey CatCe Cn—Cn

cytey ot 2 it e Cytep -2 T3

Cis+ Cas 1 Cis~Cas

C3s . Css Cas icss 7

Cutcu 1 Ci4— Cu

Cu “T— Cs4 Cu 5“64 _‘—2

203 CptCx 2c5 24 Ces Ci6~ C2¢
cqu-cp C1—C Cnten

€31~ Cxp 3 Cs1—Cs2 Cq~Ca 7 7

o () o

e () L X0

.%'
c(\s)‘

'(\3).

&)

CIZJ

-

1
!(dn +dor + dpy + diy) E(d" - dy + diy - dp)

fn fn —fn
e s e fatfn futfn —fu-fno
*=Qsf' Q= fs fos ~fis o
foa fos ~fun .\0
2f3 2 =2 .(\3).
fu—fo fu-fo ~futho .
\ . as3 axy —as ® (2)
a* = Q30 = ax ap —an| =] - 3 -
—a; —dan an
, 1. . | , R . . t . ,
J3 5Usi +j3) 5 (s + j39) J» I s J3s 5 (s + j9)
2 2 2
. | V. 1. . . . . . 1. .
J 52+ ) 5 (i = 29) Jo Ju J26 Jas 5 Uas + Jag)
2 2 2
. | PP 1. . R , , . |
—Jus —E(lll‘*'hz) "E(Ils*’ho) =jn  ~ia  —he —hs _i(hs*‘]w)
. . Q) . . . . . .
%(du +dz) %(du ~dy) dis de dgs dsy %(fin +dgy)
Yt ot dn b ) Yo o= du-dy) dntdy datdo  dytde  dutds
%(du +dyy) %(dl! = dss) dyy ds dgs dys %(du + dos)
S da) Lo s b du e G jdutdy
die+ dag dag — dse 2drg 2de 2 2 dio+ oy
%(dn*’dn—du‘dn) %(dn—dn‘dlﬁ dy) dn-dn da-dy dy-de dy-dg

1 i
3(du+ doy~ dyy = dyg) 5 dy = o - dip+ dn)

(B1)
(B2)
(B3)
1. ,
5(131 = Ja)
| .
5(]2I ~Jn)
1. ,
=3 U=
(B4)
%(du‘dn) )

1
5(415'415)

1
i(du‘dza)
d"\ - d!ﬁ
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oMo
oeHen
L .\o .\o
[~ 1 1
by i(b“ + by} i'bn* byg) by bu by
bis+ by %U’u byt bt byl %(bm" b= big=b) brntbn  butbu b+t by
| 1
byy ~ by E‘bu’bﬂ*’bzz*”w) i(bu*bu*bn*’bw) by~ by bru= b bys by
I 1
by E(b" +bg) E'b“ = byo) by b bas
b =QubQitl=f 3 but b LI bo b b
1 1
bey i(b“ - be2) i(b“_ beo) b bes 2
b 1iba+ba) Jiba—bo) be  bu b
bgy+ by %lbu*bw*bu*bw) %U’u*bn‘bao—bwl bo+ by butba  bes+ bes
L.bn‘bn %”’H*’hl*’h:*b::) %“’w‘hzs‘hw‘* b)) bu=-by  biu—bu  b—by
[
L JUN NV
o e .
®(2)

ctrics

«@. |

(3)

bys
byg+ by

bgs — bos

bas + bos

bys = b

J

803
(BS)
1 1
E'bu‘*‘bw) i”’xn‘bxz] T
| |
i("m* bas+ bio+ by) i(b" +bn—bi-bn)
1 1
E(bu_ bog + bao — bes) E(b“ = bot = byy + bay)
1 1
i(b"+ brs) §(b7| = bn)
i !
§1bu+bn) E(bu‘bu)
1 1
E(bu+ bey) i(bm = be)
1 1
3 (bsy + bss) 3 (b5 = bs)
1 |
i(b“ + bog + bag + bgg) i(b“ + by - bgx — bgy)
30u=bat b= b) J(buy-ba= b+ b
—

(B6)

where ., @ @——@ denote respectively, the zero component, non-zero components and non-zero equal components,

respectively.

The value of the elements in the coefficient matrices are decided by Schur’s Lemma([7) and by comparing their elements
on two sides of the new matrix equation associated with the same irreducible representation.

APPENDIX C

Systems of algebraic equations for the constant elements of the matrices &, f, 4, f, d and b are obtained from eqns
(B1)-(B6). Details are given here for the equations for matrix & only [eqn (B1)].

n # 0,

cnten#0, ¢3=0, cu=0, ¢u=0, cpn=cy
tntep
et en#0, 6‘12"'—2 #0, cytce=0, cotc=0,
Cu=cen, Cstes=0
¢5=0, cis+ e =0, Css = Casy cas=0, Cos = C14— Co4y
€15 = Cas
cu=0, Cutcu=0, cs4=0, cea=0
€36=0, citcx=0, 2s6=cu-ca, Cu=0,
cuten
C‘ss=——‘2 —C12 C16= C26
€31= €3 €= Cn Cs1= Cspy Cé1 = Ce2

Equations for the remaining matrices can be obtained analogously.



