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Abstract-Schur's lemma is applied to linear constitutive equations of elastic dielectrics which remain
invariant under a group of symmetry transformations. The method of group representation theory is
discussed in detail to generate constitutive equations for alpha-quartz which belongs to the D3(32)
symmetry group. The constitutive equations thus constructed agree with those obtained by Mindlin and
Toupin[I].

1. INTRODUCTION
The problem of constructing explicit constitutive equations which remain invariant under a
group of symmetry transformations has been the subject of many investigations in recent years.
To incorporate symmetry restrictions in non-linear constitutive equations, it was customary to
follow the method of Voigt[2] where one starts with polynomial expansions and then in
vestigates the restrictions which the material symmetry imposes on the constant coefficients in
such expansions. This method is cumbersome and increases in complexity with the increase in
degree of the terms. More sophisticated procedures have been developed by Fieschi[3],
Fumi[4], Callen[5] and Nye[6] which determine the exact number of non-zero independent and
dependent coefficients in the constitutive equations, as restricted by symmetry. Recently, a
systematic and direct method of group representation theory has been developed by Smith and
Kiral [7, 8] to incorporate symmetry restrictions in constitutive theory. Applications of methods
of finite groups and symmetry to problems of mechanics and constitutive theory are discussed
in [9, 10].

In this paper, the method of group representation theory and Schur's lemma are employed [7]
to construct constitutive equations for a-quartz, which belongs to the crystallographic point
group D3(32). The linear constitutive equations for the elastic dielectric with arbitrary sym
metry are written in matrix form containing six components of each of the symmetric stress and
strain tensors (cT, S), three components of each of the electric and polarization vectors (LE, P),
and nine components of each of the electric and polarization gradient tensors (E, fO, involving
171 independent constants. The symmetry group for a-quartz consists of six elements which
are 3 x 3 matrices. Carrier spaces associated with the irreducible representations of the group
are constructed and the number of independent constants reduced to 34.

The set of constitutive equations thus obtained, agree with those derived by Mindlin and
Toupin [1].

2, LINEAR CONSTITUTIVE EQUATIONS OF ELASTIC
DIELECTRICS

Let a homogeneous linear elastic dielectric continuum with the contribution of polarization
gradient taken into account and bounded by a surface S, occupy a region V in a rectangular
Cartesian coordinate system.

The general quadratic expression for the strain energy density of deformation and polariza
tion is given by

wL 1 S S 1 1= 2Ckljj jj kl +2ail'iPj +2bjjk/ II jjIlk/

+ fijkSjkPj + jjjkPjIIjk +djjklIIjjSkl
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where Sij are the components of the symmetric strain tensor, Pi are components of the
polarization vector and Il ij = Pj,i are the components of the polarization gradient tensor.
Surface energy effects are assumed to be negligible.

The constitutive equations for the components of stress tensor aijo the local electric vector,
LEi> and the electric tensor, Eijo are given by [1]

awL
aij = aS

ij
=CijklSkl + ftijPk + dklijIlkl

awL •
- LEi = aP

i
= fik/Skl + aikPk +lik/Ilkl

awL •
Elj = aIl

ij
= dijklSk/ +/kijPk + bjjk/Ilkl.

Next, introduce the following abbreviated matrix notation,

(2.2)

(2.3)

(2.4)

(2.5)

where the superscript T denotes the transpose of the column vector. The scheme in which a
pair of indices, ij, or kl, is replaced by a single index is indicated in Tables l-l

The system of constitutive equations, can now be written in the matrix form as

iT l . § + it .P Jt .n
(6 x I) (6 x 6)(6 x 1) (6 x 3)(3 x 1) +(6 x 9)(9 x 1)'

-LE= f·S + d·P jon
(3 XI) (3 x 6)(6 x I) (3 x 3)(3 x I) +(3 x 9)(9 x I)'

Table I. Indexing scheme for Cilk" gmiJ

(ij), (kl) 11 22 33 23,32 31,13 12,21

2 4 5 6

, m = 1-3

Table 2. Indexing scheme for bilk" imkl

(ij), (kl) 11 22 33 23 32 31 13 12 21

2 3 4 5 6 7 8 9

, m= I...{)

Table 3. Indexing scheme for dklil

(k/) 11 22 33 23 32 31 13 12 21
I 2 3 4 5 6 7 8 9

(ij) II 22 33 23,32 31,13 12,21

2 4 5 6

(2.6)

(2.7)
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i = d·S [I.p + b·II
(9 X 1) (9 X 6)(6 X 1) +(9 X 3)(3 X 1) (9 X 9)(9 X 1)'
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(2.8)

where the numbers in parentheses below the matrix indicate the order of the matrix. For an
elastic dielectric with arbitrary symmetry, the total number of independent material constants is
171. A group of symmetry transformations under which the constitutive equations remain
invariant leave some constants mutually dependent and make others vanish.

3. ALPHA-QUARTZ-THE SYMMETRY GROUP DJ(32)

Of all the elastic dielectrics, a-quartz is an optically active and birefringent material. It
belongs to the D3(32) crystallographic group. The matrices comprising the symmetry group, r, of
this crystal class are given by

1 _ y'3
-2 2

fk:~
y'3 1

A4~ -1
2 2

-1

1 y'3

[_-~J
_ y'3

J2 2 2

A5~
y'3 1

A6~
1

2 2 2
-1

where . denotes a zero component.
There are three inequivalent irreducible reyresentations[8] D\(A,.), ~(A,.) and ~(Aa),

a = l~ associated with the group r = {fit. ..42, rh ..44, ..45, ..46} which are of degree one and two
and are listed in Table 4.
The determination of the form of the constitutive equations (2.2)-(2.4), which are invariant
under the group r, becomes apparent when S, P and IT are decomposed into sets which form
the carrier spaces of irreducible representation of r, D,(Aa ); i =1, 2, 3 and a =1, ... ,6.

The six independent components (SIl, S22, S33, S23, S3h S\2) of the symmetric tensor S,j, the
three independent components (Ph P2, P3) of the vector P, and the nine components (IIIl' II22,
II33, II23, II32, II3h II13, II\2, II2\) of the arbitrary tensor IIijo can be split into the sets[7]

(1) sW, (SIl +S22)(I), m~, (IIIl +II22)(I);
(2) P3(2), (II\2 - II2\)(2);

Table 4. Irreducible representations of D:!(32)

AI A2 AJ A4 Al A6

DI(A.) 1 1 1 1 1
~(A.) 1 1 -1 -1 -1

~ 1 yO] [~! -~'] ~1 yO] [1 f]D:!(A.) G~J. -~; ~~ . [-1 0]
- ~3 --i .1 • o +1' y'3 1

2 T -2
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(3) {Sn, S23}(3), {2S12, SII - S22}(3), {P2' - Pd(3),
{lIn, II23}(3), {II3h II32}(3), {II l2 +II2.. II 11 - II22}(3); (3.3)

the transformation properties of which are defined by D.. V 2, V 3• The new sets of quantities,
§*, p* and IT* (which are the carrier spaces of the irreducible representations) are related to
the original sets by the following transformations

where

§* = O(S)'§' p* = Q(p). P, fi* = 0(1)' fi (3.2)

S*, = [SW, (SII + S22)(I), {Sn, S23}(3), {2Sl2, (SII - S22)}(3)],

p*' == [N2l, {P2, - PI}(3)],

11*' == [IIW, (II 11 +II22 )(1), (lIl2 - II2.Pl, {lIn, II23 }(3),

X {II31 , II32}(3), {(lIl2 + II2)), (II11 - II22)}(3)],

(3.3a)

(3.3b)

(3.3c)

and where the matrices for Q(Sh Q(Ph Q(lll as well as for their inverses are given in Appendix A.

4. REDUCTION BY SCHUR'S LEMMA

Multiplying the constitutive equations (2.6H2.8) by O(Sh O(P) and Oal), respectively, one can
rewrite the system in the following form

where

iT* == ~* . §* + j*' .P* +d*t . IT*

- di* == j*. S*+a*· P*+ J*. 11*

e* = d* .S* +J*' .p* +b* ·11*

(4.1)

(4.2)

(4.3)

-* Q= -
(J' == (S)· (J', E* == Q(Pl' P, e* = Q(11) . 11, (4.4)

§*, P*, fi* are defined by (3.2), and the coefficient matrices are given by

~: i*'
4'J r(" om,] ~

l'
1J [0("' Q(~) o(~d* i.* = Q(p) a J=

d* ~*t b*
:'/ b} }

Making use of the matrices (Al}-(A4) and Schur's Lemma [7], the coefficient matrices
assume the forms shown in Appendix B. The following observations can be made from the
matrices listed in Appendix B.

(i) The matrices d, band care symmetric.

(ii) In all starred (*) coefficient matrices \' represents a constant times (~ ~) and is

associated with the elements of the corresponding column matrix (in the constitutive equations)
which form the carrier space of the irreducible representation D3•

(iii) In the matrix c*, the elements cf.. cf2, cr. and d2 are associated with the elements sW,
(SII + S22)(I) of the column vector S* which form the carrier space of the irreducible represen
tation V ..

(iv) In the matrix Ii*, the element aft is associated with the element P3(2) of the column
vector P* which form the carrier space of the irreducible representation V 2.

(v) In the matrix i*, the element it3 is associated with the element II\~ - m'1) of the column
vector 11* and i:l is associated with the element P3(2) of p* which are both carrier spaces of
irreducible representation V 2•

(vi) In the matrix d*, d~.. di., d~2' di2 are associated with the elements IIW, (lIlt + II22YI) of the
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column vector fi* or the elements sW, (SII +S22)(I) of the column vector S* which are both the
carrier space of the irreducible representation DI .

(vii) In the matrix b*, the elements btt. br2, btt. bt2 are associated with the elements IIW,
(IIII +II22)(I) of the column vector fi* which are the carrier space of irreducible representation
D1; b:3 is associated with the elements (II 12 - II21)(2) which is the carrier space of irreducible
representation D2•

A comparison of corresponding elements leads to a system of algebraic equations listed in
Appendix C, the solution of which results in the following restrictions on the elastic and
dielectric constants.

(a) For matrix C

CSi = ciS = C6i = Ci6 =0

C43 = C34 = 0,

U= 1,2,3,4)

while CIt. C12, CU, C14, Cn, C44 are distinct non-zero constants, and C22, C23, C24, CSS, CS6, C66 are
dependent non-zero constants, given by

C22 = CIt.

CSS = C44, C66 = (CII - CI2).

Thus the number of independent constants in c is 6.

.
(b) For matrix I

hi =hi =0

Ilj = hi =0

U= 1,2,3,4)

U= 5,6)

while til and tl4 are non-zero distinct constants, and !I2, hs, 126 are dependent non-zero
constants given as

126 = - 111'

Thus the number of independent constants in the matrix I is 2.

(c) For matrix Ii

where l)ji is the Kronecker delta. The number of independent constants in the matrix Ii is 2.

(d) For matrix j

ilk = 0 (k = 6-9),

(k = 1-5)

where ill, i14' ilS, iJs are distinct non-zero constants and it2' h6' i27' i28' i29, iJ9 are dependent
non-zero constants given by

il2 = - ill,

i39 = - iJs.

Thus the number of independent constants in the matrix j is 4.
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(e) For matrix J
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(k=I-5)

d 6k = d 7k = d Sk = d 9k =0

d S3 =d 43 =d 34 =0

(k = 1-4)

while d u • d12, du, d14, d 3h d33 , d4h d44• dSh dS4 are distinct non-zero constants and d2h d22, d23,

d24, d32, d42• dS2 , d6S• d66 , d7S , d76 , dss , d86• d9S and d96 are dependent non-zero constants defined
as

d21 =d12, d22 =du • d23 =d13, d24 = - dl4

d32 =d3h d42 =- d4h dS2 =- dSh d6S =dS4, d66 =dSI

d7S =d44• d76 =d4h dss =d14,
1

d86 =2(du - d12)

d9S =d14•
1

d96 =2(du - dI2 ).

Thus the number of independent constants in matrix J is 10.

(f) For matrix G(symmetric)

bl! =0 (i =1-5. j =6-9) and (i =6-9, j = 1-5)

b 34 =b 3S =b 43 =b S3 = 0

while bu, b 12, bu. b14, blS. b 44, b 4S , b ss• b 88• b 89 are distinct independent non-zero constants and
b 22, b 23 , b 24, b 2S• b 42• b S2• b 66 , b 67 , b 68• b 69, b 77 , b 7S , b 79, b 99 are dependent non-zero constants
given by

b 22 = bu, b 23 =bu. b 24 =- b14, b 2S =- bls

b 42 =- b 14, b S2 =- b Sh b 66 =b ss , b 67 = b 4S• b 68 = b Sh

b 69 =b SI

b 76 =b 4S , b 77 = b 44, b 7S =b14, b 79 = b l4

b 86 = blS, b S7 =b14, b 96 =blS, b 97 =b 14• b 99 = b 88•

Thus the number of independent constants in matrix Gis to.
The 171 (21 +18 +6+27 +54 +45) independent constants of an elastic dielectric with

arbitrary symmetry are thus reduced to 34(6 +2+2+4+10 +10) for an alpha quartz belonging
to the ~(32) symmetry group.

The system of constitutive equations (2.6)-(2.8) for the a-quartz assumes the form

5" 5" 5" 5" 511 5" P, P, P, nil n" n" n" n" nll nil n" n"
u" c" C" CIl C" /" d" d" dll d" d"
U" C" c" CIl -C'4 /" d" d" dll -d" -d"1
U" CIl CIl C" dll dll d"
C" C" - CI" C.. /" d" -d" d.. d,.
Ull C.. C" -/" d" d.. d" d"
u" C" c.. -/" d" d" d.. d..

-LE, /" -/" /" a" ill -ill il4 jl~

- LE, -/" -/" a" -ju - iJ.. -ill -ill
-LE, a" i,. - i,.

(" d" d" dll d" ill b" b" bll b" b"
(" d" d" dll -d1.. -ill b" b" bll -hi" -b"
(" dll dll d" bll bll b"
(" d" -d" d... il4 b" -bl .. b.. b..
(" d" ~d" d,. it, b" -b., b.. b"
(" d" d" -j" b" b.. b" b"
(Il d.. d" -j14 b" b.. b" b"
(" d" d.. - ill i,. b" b" b.. b..
(" d" d.. - ill -i,. b" b" b.. b..
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and which, with minor changes in notation, agree with those given by Mindlin and Toupin[l].
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APPENDIX A
The matrices Q(S), Q(P) and 12m) which appear in eqn (3.4), are given as

-I

-I

,]

-I

(AI)

(A2)

The inverse of these matrices QISh Q(p) and Q(ll) can be easily evaluated and are given by

Oil,= [1
1/2

In]
~ j1/2 -In

• -I
Q(p)= (A3)

1/2

1/2 I
1/2 -1/2

·-1
(A4)QIll)=

1/2 1/2
-1/2 1/2
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APPENDIX B

The matrices c*. f*'. a*. g*. d*' and b* listed in eqn (4.5) are evaluated using (A.I)-(A.4) and are given by

CIl +Cz] 1 CIl - C2'
C3' -Z- C53 C43 2C6' -Z-

C31 +Cn
CII +Cn

Csi +Cs2 C41 +C42
C61 +C62 CII- C22

CI2+--Z- -Z- -2-

c* =Q(SIC'Q(Jl = CIS +C25 1 CIS - C25
C35 -2- C55 C45 2C65 -2-

C,4 +C24 1 C14- C24
C34 -2- C54 C44 2CM -2-

2C36 CI2 +C26 2C56 2C46 C66 CI6 - C26

C31 - Cn ~ C51 - C52 C41- C42 ~ £u.:!:.£ll
2 2 2 - CI2

• (I) • (I)
• (I) • (I)

(BI)

h3 123 -fl3

hi +1,2 121 + f22 -fll-fl2
• • •• I

IH 12l -fllf*' =Q(sJ'Q(P) =
~.

(B2)

h4 124 - fl.

Zh. 2/2. -2f,.

~ht- In 12, - 122 -fll+ fl2

~ On
an -O'~ r(2j J• • -1

- a21
= :~. (B3)a* =Q(p)t2Q(P) = a23 an

- all - al2 all

li"

1. .) 1. .
h7 h4 h. hl

I. .

j J2(131 +In 2(hs +130) 2 (lls +130) 2(13,-132)

• • •• I
in

I. . I. . h7 h. h. hl
I. . I. .

j* =Q(pJQ(ll) = 2(121 +122) 2(12s- 120) 2(12s +120) 2(12, - 122)

-ill I. .) I. . -in -1,. - i,. -ill
I. . I. .

-2(]" +112 - 2 (lis +119) - 2 (lis +119) - 2(/" -112)

• (2)
(B4)

d" ~(dll+ d:l) ~(dl3-d'lJ) d" d" dOl dn i1dn+d93 ) ~(dB-d21)

d31 +4)2 ~(dll t J12 +d21 +d22 ) itd.l - d'l - d.,- d91 ) d71 + d72 d.2 +d.2 t41 +d62 d~l +dn !(dl1+4'1 + d12 +d92 ) ~(dll - dZI +d12 - d22 )

d" i(dl~+d2,) ~(d,,-d"l d" d" d" d" ~(d,,+d,,) i(d,,-d2d
j.' "" QISI,h],-rl. ""

d~ i(d1",t d2",) ~(d.. -d..) d" d.. d.. d" ~(d.. +d..) }ldI4 -d2",)

2d" d ,6 +d26 d.. -df}6 2d" 2d.. 2dM 2d" d8fl+d9f> d
'
f,-d26

dl1-dn ildll +d21 - d'2 - d22 ) iCdl1 - 4" - Jut dtt ) d'l-d12 d",.-d42 d61 -d'2 d'l-dn ildll +d'l- 412 - d92 ) J(d.! - d21 - d'2 +d22 )
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• (1) • (I)
• (I) • (I)

803

(85)

b" !fh'! + bnl ~lbJ8- bw) b" b.14 b" h3~ ~fb18+ b39 ) ~(b]l- bd2

bn +h23 i(b ll + 1>21 +hl2 + 1> 12 1 i(h 18 + "28- b19 - "29) bn +b27 "1.+ "24 /11(,+ n2f. b,~ + b2~ i(h 18 +b21 + "1\1+ b29 ) i<b ll + b21 - b12 - bn )

ba)- b'l3 ~(b81 - 1>91 + b82 - b.d ~lhll8- h'M- bll9 + "99) bg-)- b91 hfl4- b~ b86 - b9f, b8~ - b9~ ~(b88-b98+bl9-b99) iCbll-b91-bI2+b91J

b" ifb71 +b72 ) i1b,8- b79 ) bn b" b" b" i(b78 +bnil i1b71- b72 )

b· "'" (Q(11$Q(-~J! =
b.~ ifb41+bd llb.. - b,,1 b" b" b.. b" llb.. +b,,) i1b41- bd

b" i(b61 - bd llb.. - b,,1 b" b.. b.. bM l,b..+b,,1 i<b61 - b62 )

b~3 i(b ll +bn) i(b~8-b~9) hq b.14 b" b" i(b~8 + b~9) i(b'l- bn )

blltb,] ifbl' +b91 +h82 +b91 ) i(bas +b98 - b89 - b99 ) b87 +brn b~+ b<u b811 + b9f, b"t b9~ i(b83 +b91 +h19 + b9'l) i(b81 +b91 - h82 - b92 )

b13 - b21 ~ (1)11- b21 +b l2 - b22 ) ~(h18 - "28- "19+ hnl b 17 -b27 h l4 - b24 bu,- bu bl~ - b2~ ~(b18 - "28+ b19 - b29 ) ~(bl1 - b21 - b12 +bn )

(86)

where .•••• • denote respectively, the zero component, non-zero components and non-zero equal components,
respectively.

The value of the elements in the coefficient matrices are decided by Schur's Lemma(7) and by comparing their elements
on two sides of the new matrix equation associated with the same irreducible representation.

APPENDIX C
Systems of algebraic equations for the constant elements of the matrices c, i, d, j, J and b are obtained from eqns

(81)-(86). Details are given here for the equations for matrix conly [eqn (81)).

Cn f. 0, Cn +C23 f. 0, C~3 =0, C43 =0, C63 =0, Cn =C23

C31 +Cn f. 0, +Cn +C22 f. 0
C41 +C42 =O. C61 +C62 =O.C12 2 •

CII = C22, C~I +Cl2 =0

C3~ =0, CIl + C2~ =0, C~~ =C44. C4~ =O. C65 =CI4 - C24,

C34 = o.
C36 = 0,

CI4 + C24 = O. C~4 = 0,

C46 = 0,

Cn +C22
C66 =--2- - CI2,

C~I =Cn.

Equations for the remaining matrices can be obtained analogously.


